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SUMMARY

The parameters of a three-dimensional (3-D) barotropic tidal model are estimated using the adjoint method.
The mode splitting technique is employed in both forward and adjoint models. In the external mode, the
alternating direction implicit method is used to discretize the two-dimensional depth-averaged equations
and a semi-implicit scheme is used for the 3-D internal mode computations. In this model the bottom
friction is expressed in terms of bottom velocity which is different from the previous works. Besides, the
bottom friction coefficients (BFCs) are supposed to be spatially varying, i.e. the BFC at some grid points
are selected as the independent BFC, while the BFC at the other grid points can be obtained through
linear interpolation with these independent BFCs. On the basis of the simulation of M2 tide in the Bohai
and North Yellow Seas (BNYS), twin experiments are carried out to invert the prescribed distributions
of model parameters. The parameters inverted are the Fourier coefficients of open boundary conditions
(OBCs), the BFC and the vertical eddy viscosity profiles. In these twin experiments, the real topography
of BNYS is installed. The ‘observations’ are produced by the tidal model and recorded at the position of
TOPEX/Poseidon altimeter data, tidal gauge data and current data. The experiments discuss the influence
of initial guesses, model errors and data number. The inversion has obtained satisfactory results and the
prescribed distributions have been successfully inverted. The results indicate that the inversion of BFC is
more sensitive to data error than that of OBC and the vertical eddy viscosity profiles. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several numerical methods have been widely used in the discretization of time-dependent three-
dimensional (3-D) primitive equations. The time integration schemes of these methods can be
fully explicit (see, Reference [1]), semi-implicit (e.g. References [2–4]) or fully implicit [5].
For large-scale oceanic problems, the applications of 3-D models are becoming a reality with
the aid of modern computers. The fully explicit finite difference method is relatively simple to
implement, except that its time step is strictly restricted by the Courant–Friedrich–Lewy (CFL)
stability criterion [6]. At present, many existing ocean models are based on an alternating direction
implicit (ADI) method. ADI method results in computational efficiency superior to fully explicit
methods because their improved stability allows large time steps to be employed. Since the model
must simulate both the velocity field and the ocean surface elevation, a technique known as mode
splitting (see, Reference [7]) has been used in several ocean models. In the model formulation, the
governing system of equations is split into an external mode and an internal mode. A system of
two-dimensional (2-D) vertically integrated equations (external mode) is solved independently from
the 3-D equations (internal mode). The external mode can calculate the ocean surface elevation
efficiently even if a small integration time step is required. The solution of the more computationally
intensive 3-D internal mode equations can be achieved by using a large time step. In this paper, a
numerical tidal model based on the 3-D primitive equations is established to simulate the barotropic
tide in the Bohai Sea and the North Yellow Sea (BNYS). The numerical schemes for solving
the equations of motion and continuity use the internal–external mode splitting technique. The
ADI method is employed for the external mode computations which give the surface elevations
and depth-averaged currents. The time step of external mode is thus not restricted by the CFL
condition. A semi-implicit scheme is used for the internal mode computations, which give the
vertical structure of the currents. The time step of internal mode can be significantly longer than
that of the external mode. As a consequence, the overall computational speed can be several times
faster than that of the general explicit models.

Among all the data assimilation methods, four-dimensional variational (4DVAR) data assimi-
lation is one of the most effective and powerful approaches. It is an advanced data assimilation
method that involves the adjoint method and has the advantage of directly assimilating various
observations distributed in time and space into numerical models while maintaining dynamical
and physical consistency with the model. The earlier applications of adjoint assimilation method
in oceanography were addressed by Bennett and McIntosh [8] and Prevost and Salmon [9] who
applied the weak constraint formalism of Sasaki [10] to a tidal flow problem and a geotrophic
flow problem, respectively. Thacker and Long [11] then employed the strong constraint formalism
in which the model equations are imposed as exact constraints on the minimization. The adjoint
method is a powerful tool for parameter estimation. Panchang and O’Brien [12] estimated the
bottom drag coefficient in a tidal channel using some experimental results. The phase speeds were
estimated by Smedstad and O’Brien [13] in a reduced gravity model for the tropical Pacific Ocean.
The wind stress coefficient and the oceanic eddy viscosity profile were estimated in the work of
Yu and O’Brien [14] and the work was extended to optimize the initial condition (see, Reference
[15]). Ghil and Malanotte-Rizzoli [16] gave an important comprehensive review, including issues
of parameter estimation, about adjoint methodology in meteorology and oceanography. Das and
Larder [17, 18] estimated the bottom friction coefficient (BFC) and water depth in a 2-D tidal
model. Lardner [19] estimated the open boundary conditions (OBCs) in the same 2-D tidal model.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:47–92
DOI: 10.1002/fld



PARAMETER ESTIMATION FOR A 3-D NUMERICAL BAROTROPIC TIDAL MODEL 49

By assimilating the velocity data from one or more current meters, Lardner and Das [20] estimated
the eddy viscosity profile in a quasi-3-D numerical tidal and storm surge model. Lardner and Song
[21] extended the work to estimate the eddy viscosity profile and friction coefficients. Navon [22]
surveyed briefly the state of the art of parameter estimation in meteorology and oceanography
in view of applications of 4DVAR data assimilation techniques to inverse parameter estimation
problems. Lu and Hsieh [23–25] developed an adjoint model for a simple equatorial ocean model
that was coupled to a simple atmospheric model and the parameters in this coupled model were
estimated. Marotzke et al. [26] constructed the adjoint model of the MITGCM (Massachusetts
Institute of Technology ocean general circulation model) using R. Giering’s software tool Tangent-
linear and Adjoint Model Compiler. More recently, Heemink et al. [27] assimilated tide gauge
and altimeter data into a 3-D shallow water model to estimate the OBC, the friction and viscosity
parameters and water depth. Zhang et al. [28, 29] estimated the wind drag coefficient and the
lateral tidal OBC by assimilating pseudo-observations into a 2-D Princeton Ocean Model (POM).
Peng and Xie [30] developed an adjoint model of the 3-D nonlinear POM to construct a 4DVAR
algorithm for coastal ocean prediction. Lu and Zhang [31] carried out twin and practical experi-
ments to invert the spatially varying BFC in a 2-D tidal model by assimilating the Topex/Poseidon
(T/P) satellite data and tidal gauge data. In this paper, the model described in the first para-
graph is taken as the forward model and an adjoint tidal model is constructed. Moreover, the
OBC, the BFC and the vertical eddy viscosity profile are inverted by carrying out identical twin
experiments.

As noted by Yeh in the work of ground water flow parameter estimation, the inverse or parameter
estimation problem is often ill posed and beset by instability and nonuniqueness, particularly if
one seeks parameters distributed in space and time domain [32]. The same viewpoint has been
put forward in References [13, 17, 18, 20, 27, 33, 34]. In these works they proposed to insert an
additional criterion into the cost function named the penalty term, and by doing this, large fluc-
tuations will be penalized to ensure the parameters varying smoothly. According to the viewpoint
of Smedstad and O’Brien, adding prior information about the parameters (penalty term) increases
the chance that the cost function will be convex (namely, the solution to the inverse problem is
unique) [13]. Lardner and Das pointed out that this term is useful especially when the data contain
observation error [20]. In this paper we take two measures to overcome this difficulty. First, the
minimization algorithm used in Lu and Zhang [31] is employed to ensure that the cost function can
decrease continuously without large fluctuations. Second, the dimension of the parameter space is
reduced. In the present study, the BFC at some grid points is selected as the independent BFC,
while the BFCs at the other grid points can be obtained through linear interpolation with these
independent BFCs (see, Reference [31]). In the previous works on the 3-D adjoint tidal model (e.g.
References [20, 21]), the bottom friction is expressed in terms of depth-averaged velocities, and
the horizontal shear stresses and the convective terms are neglected in the momentum equations.
However, for the bottom friction effect, turbulent boundary layer models of the near-bottom flow
indicate that it is physically realistic to use a quadratic dependence of bottom friction on the
bottom velocity. In our model the bottom friction is expressed in terms of bottom velocity while
the horizontal shear stresses and the convective terms are included.

The paper is organized as follows. The numerical 3-D tidal model is presented in Section 2.
The adjoint model is shown in Section 3. In Section 4, identical twin experiments are carried out
to invert the prescribed parameter distributions and the results are analyzed. Finally, Section 5
provides main conclusions and discussions of some related issues of this study.
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2. NUMERICAL TIDAL MODEL (FORWARD MODEL)

2.1. Governing equations

Assuming the pressure is hydrostatic and the density is constant, the 3-D, nonlinear, time-dependent,
free-surface, primitive equations of motion and continuity on spherical coordinates are given as
follows:
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where t is the time, � and � are the east longitude and north latitude, respectively, � is the sea
surface elevation above the undisturbed sea level, u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the
velocity components in the horizontal x-, y-direction and in the vertical z-direction, respectively,
R is the radius of the Earth, a= R cos�, f is the Coriolis parameter and f =2�sin�, where �
represents the angular speed of Earth’s rotation, g is the acceleration due to gravity, Ah and Av are
the coefficients of horizontal and vertical eddy viscosity, respectively, � is the Laplace operator
and �(u,v)=a−1[a−1��(��(u,v))+R−1��(cos���(u,v))].

The kinematic boundary condition at the moving free surface and at the impermeable bottom
and the dynamic boundary condition at the bottom are given by (4), (5) and (6), respectively,
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where Cd is the BFC, h is the undisturbed water depth and (ub,vb) is the velocity vector at the
sea bed.

Integrating Equations (1)–(3) from the sea bed z=h to the free surface z=−� and applying the
boundary conditions (4)–(6), we can get the 2-D vertically averaged equations as follows:
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where U (x, y, t) and V (x, y, t) are the depth-averaged horizontal velocities, Lx , Ly and Rx , Ry
are the convective terms and bottom friction terms, respectively.

2.2. Discretization of model equations

Arakawa C grid is used in the finite difference forms (see, Reference [35]) and the free-surface
elevation is defined in the center of the cell, while the velocity components are located at the faces.
As shown in Figure 1, each cell is numbered at its center with indices (i, j,k). The u-velocity
is defined at half-integer i and integers j and k; v-velocity is defined at integers i and k and
half-integer j ; w-velocity is then defined at integers i and j and half-integer k; the free-surface
elevation � and undisturbed water depth h are defined at integers i and j . The undisturbed water
depth h is specified at the u and v horizontal points: hui+1/2, j =(hi, j +hi+1, j )/2, hvi, j+1/2=
(hi, j +hi, j+1)/2. We suppose that the water is divided into M layers and the thickness of each
layer is defined to be �l , (l=1,2, . . . ,M). In detail, M is the function of horizontal coordinates,
i.e. M=Mi, j ·�zi+1/2, j,k and �zi, j+1/2,k are defined to be the thickness of the kth water layer
at u and v points, respectively. Because of the irregular bottom and the moving free surface, the
surface layers and the bottom layers are usually not fully filled and the thickness of these layers is
defined to be the wetted height of the corresponding face. Therefore, the thickness of the surface
layer will change with the time level. In addition, the number of layers is specified at the u and
v horizontal points. At u points the number of layers is Kx and Kxi+1/2, j =min(Mi, j ,Mi+1, j );
at v points it is Ky and Kyi, j+1/2=min(Mi, j ,Mi, j+1). The time-dependent total water depth is
given by Hi, j =hi, j +�i, j .

In this model, the mode splitting technique is employed. Equations (1)–(3) and (7)–(9) are taken
as the governing equations of internal mode and external mode, respectively. The external mode
can calculate the ocean surface elevation efficiently even if a small integration time step is required.
The solution of the more computationally intensive 3-D internal mode equations can be achieved
by using a large time step. The time step of internal mode �T is assumed to be q times longer
than that of external mode, i.e. �T =q�t , where q is even and �t is the time step of the external
mode. The Lx , Ly and Rx , Ry in Equations (8)–(9) are the convective terms and bottom friction
terms, respectively, which are computed in the internal mode. The coupling relation between

Figure 1. Layout of the computational grids and cells.
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Figure 2. The coupling relation between the external and the internal mode computations;
q is even and equals to four in the figure for instance; n∗ =q×m, where n∗ and m are the
time index of external mode and internal mode, respectively. The free-surface elevation
calculated in the external mode at ⊕ is used in the computation of internal mode and the
u,v,w calculated in the internal mode at � are used to compute Lx , Ly, Rx and Ry in
Equations (8)–(9), i.e. the convective terms and bottom friction terms of external mode.

the internal mode and the external mode is shown in Figure 2. The discretization of external mode
and internal mode is described in Appendices A.1 and A.2, respectively.

2.3. Boundary conditions

For the external mode, the free-surface elevation of M2 tide at the j th time step is given as
�jOl ,Pl

=a0,l +[al cos(�j�t)+bl sin(�j�t)] along the open boundaries, where (Ol , Pl) stands for
the grid points at the open boundaries, � denotes the frequency of M2 constituent and al , bl are
the Fourier coefficients.

For the internal mode, the Orlanski radiation condition is applied. Assuming that �b is the
velocity of the points at open boundaries, b is the index of these points and m is the index of time
step, the Orlanski radiation condition is given by
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Closed boundary conditions for both the internal and the external mode are zero flow normal
to the coast. That is, �u· �n=0 for the grid points at closed boundary, where �n is the outward unit
vector and �u=(u,v) is the velocity vector.
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3. ADJOINT MODEL

3.1. Construction of adjoint model

The adjoint method is a powerful tool for parameter estimation. Thacker and Long [11] first
employed the strong constraint formalism in which the model equations were imposed as exact
constraints on the minimization. The basic idea of the adjoint method is quite simple: A model
is defined by an algorithm and its independent variables such as initial conditions, boundary
conditions and empirical parameters. The cost function that measures the data misfit between
the model output and observations is minimized through optimizing the independent variables. In
detail, the cost function decreases along the opposite direction of the gradients with respect to the
control variables, and this gradient is calculated by what has become known as the adjoint model.
On the basis of the forward model in Section 2, its adjoint model is constructed in this section.

First, the cost function is defined as
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observations. Here K�, Ku and Kv are the weighting matrixes and theoretically should be the
inverse of the observation error covariance matrix. That is, the cost function is weighted more
heavily toward the observations that are most accurate or important. However, determining the
correct form for K�, Ku and Kv is far from easy (see, Reference [36]). In this paper, the numerical
experiments are twin ones and the ‘observations’ are generated by the tidal model; therefore, by
assuming that the errors in the data are uncorrelated and equally weighted, K�, Ku and Kv are
reduced to unit matrixes (e.g. Reference [15]). ite and iti are the number of time steps of external
mode and internal mode, respectively, and certainly ite=q×iti.

Then the Lagrangian function is given by
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where �, �, �, 	 and 
 denote the adjoint variables of u, v, �, U and V , respectively. It should
be noted that the ADI method in forward model is considered in the construction of Lagrangian
function. As a result, there are also external mode and internal mode in the adjoint model. In order
to express clearly, the external mode and the internal mode of forward model and the external mode
and internal mode of adjoint model will be expressed briefly by FE, FI, AE and AI, respectively.
The numerical schemes of adjoint model are given in Appendices B.1 and B.2.

3.2. Optimization of model parameters

In this paper, the parameters that will be optimized are the Fourier coefficients of OBC (al and bl
in Section 2.3), BFC (Cd) and vertical eddy viscosity coefficient (Av). Having determined �, �,
�, 	, 
 in Appendix B, the gradients of cost function with respect to model parameters can thus
be calculated.

3.2.1. Optimization of bottom friction coefficient. T/P altimetry has reopened the problem of how
tidal dissipation is to be allocated [37]. The bottom friction is closely related to the ocean topography
and plays an important role in the tidal phenomenon. For example, tidal dissipation models are
usually based on a frictional bottom boundary layer in which the work done by the bottom friction
is proportional to the friction coefficient and the velocity cubed (see, Reference [37]). Therefore, it
is necessary to depict the bottom friction effect clearly. In tidal models, the bottom friction effect is
parametrized by the BFC. So far, the following methods have been employed to deal with the BFC.
First, the BFC has been taken as a constant over the whole computing domain (e.g. References
[38, 39]). Second, the computing domain is divided into several subdomain and different BFCs
are used in different subdomains (e.g. References [40, 41]). Third, the BFCs are assumed to be
spatially varying (see, References [27, 31, 34]). The first two methods have been widely used in
the tidal simulations, but have relatively low accuracy. The third method can be realized only
if the adjoint method is employed. Reasonable simulation results can be obtained by optimizing
the spatially varying BFC and the calibration can become an automatic process performed by the
computer. However, too many model parameters would then lead to identifiability problem [27],
so the number of parameters should be reduced. In this paper, the BFCs at some grid points are
chosen as the independent BFCs, while the BFCs at the other grid points can be obtained through
linear interpolation with these independent BFCs [31, 34]. In this paper the independent BFCs are
selected uniformly over each 1◦×1◦ area.

Let bii, j j be a series of independent BFC and ki, j the results of linear interpolation with bii, j j ,
then we have the following relation:

ki, j = ∑
i i, j j

�i, j,i i, j j ×bii, j j
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where �i, j,i i, j j is the coefficient of linear interpolation (�i, j,i i, j j =Wi, j,i i, j j/
∑

i i, j j Wi, j,i i, j j ),

Wi, j,i i, j j is the weighted coefficient (Wi, j,i i, j j =(R2−r2i, j,i i, j j )/(R
2+r2i, j,i i, j j )) of the Cressman

form [42], ri, j,i i, j j is the distance from grid point (i, j) to (i i, j j) and R is the influence radius.
The gradients of cost function with respect to the independent BFCs are given by �L/�bii, j j =0
which yields

�J/�bii, j j + ∑
n,i, j

⎛
⎝�i+1/2, j,i i, j j ×

	ni+1/2, j r
|n/q|+1
i+1/2, j,Kx

hi+1/2, j +�ni+1/2, j

⎞
⎠+
⎛
⎝�i, j+1/2,i i, j j ×


ni, j+1/2r
|n/q|+1
i, j+1/2,Ky

hi, j+1/2+�ni, j+1/2

⎞
⎠

× ∑
m,i, j

(�i+1/2, j,i i, j j ×�mi+1/2, j,Kxr
m
i+1/2, j,Kx )+(�i, j+1/2,i i, j j ×�mi, j+1/2,Kyr

m
i, j+1/2,Ky)=0

where

rmi+1/2, j,Kx =umi+1/2, j,Kx

√
(um−1

i+1/2, j,Kx )
2+[(vm−1

i, j,Kx )
∗]2

and

rmi, j+1/2,Ky =vmi, j+1/2,Ky

√
(vm−1

i, j+1/2,Ky)
2+[(um−1

i, j,Ky)
∗]2

where n and m are the time index of external mode and internal mode, respectively. Because the
cost function decreases along the opposite direction of the gradient, we can obtain the correction
of the independent BFC as

Kc(bii, j j − b̂i i, j j )+(�J/�bii, j j )‖�J/�b‖2=0

i.e.

bii, j j = b̂i i, j j − 1

Kc
(�J/�bii, j j )‖�J/�b‖2=0

where

‖�J/�b‖2=
(∑
i i, j j

(�J/�bii, j j )2
)1/2

b̂i i, j j and bii, j j are prior and optimized values of independent BFCs, respectively, the coefficient
Kc represents the smoothness of BFC in the iterative process. 1/Kc is taken as 10−4, i.e. Kc=104

which is obtained through a trial and error procedure. The more detailed analysis about Kc will
be shown in Section 4.3, so will the Ka , Kb in Section 3.2.2 and Kv in Section 3.2.3.

3.2.2. Optimization of open boundary conditions. Among all the parameters in the tidal model,
the OBCs are the most important. And a major difficulty faced by numerical models of tidal flow
concerns the treatment of open boundaries [19]. Recently, the works on the inversion of OBC
using the adjoint method include Lardner [19], Zhang et al. [29], Ayoub [43], Gejadze et al. [44]
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and Gejadaz and Copeland [45]. The work of Lardner discussed the optimal control of OBC in the
channel using a 2-D adjoint tidal model [19]. In the work of Zhang et al., lateral tidal OBCs that
force tides in the internal region are estimated by assimilating predicted coastal tidal elevations
into a 2-D POM using the adjoint method [29]. Using the adjoint version of MITGCM, Ayoub
carried out experiments to test whether OBC can be constrained by observations inside the domain
[43]. Gejadze et al. and Gejadaz and Copeland studied the open boundary control problem for
free-surface barotropic Navier–Stokes equations with adjoint assimilation technology [44, 45].

It is assumed that the water level at the nth time step on the open boundaries is given by

�nOl ,Pl =a0,l +[al cos(�n�t)+bl sin(�n�t)]

where (Ol , Pl) stands for the grid points of open boundaries, � is the frequency of M2 constituent
and al and bl are the Fourier coefficients. The gradients of cost function with respect to al and
bl are deduced from �L/�al =0,�L/�bl =0, which yields �J/�al +∑n T

n
l cos(�n�t)=0 and

�J/�bl +∑n T
n
l sin(�n�t)=0, where

T n
l =−g	nOl ,Pl/a�� (for (Ol , Pl) on the right of the area calculated)

T n
l =g	jOl−1,Pl

/a�� (for (Ol , Pl) on the left of the area calculated)

T n
l =−g
nOl ,Pl/R�� (for (Ol , Pl) under the area calculated)

T n
l =g
nOl ,Pl−1/R�� (for (Ol , Pl) above the area calculated)

Because the cost function decreases along the opposite direction of the gradient, we can obtain
the correction of the independent BFC as

Ka(al −a′
l)+(�J/�al)/‖�J/�a‖2=0

Kb(bl −b′
l)+(�J/�bl)/‖�J/�b‖2=0

where ‖�J/�a‖2=(
∑

l(�J/�al)
2)1/2, ‖�J/�b‖2=(

∑
l(�J/�bl)

2)1/2 and a′
l and b′

l are the prior
values of Fourier coefficients which are given by experiences, Ka and Kb are the smoothness of
OBCs in the iteration which are taken as 20.0 in this paper.

3.2.3. Optimization of vertical eddy viscosity profile. The first application of adjoint method to
estimate vertical eddy viscosity profile was performed by Yu and O’Brien [14] who estimated
the eddy viscosity and surface drag coefficients in a horizontally uniform ocean model and this
work was extended by Richardson and Panchang [33]. On tidal models the works include Lardner
and Das [20] and Lardner and Song [21] who carried out parameter estimation in a quasi-3-D
tidal model. However, in their model the bottom friction is expressed in terms of depth-integrated
velocities and the horizontal shear stresses and the convective terms are neglected, which are
different from the model in this paper.

In the present study, the viscosity coefficients, Av, are defined at the interface between two
adjacent layers. From �L/�Avk =0 we can obtain the gradient of cost function with respect to Av
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as follows:

�J/�Avk+ ∑
m,i, j

[
�mi+1/2, j,k(u

m
i+1/2, j,k−umi+1/2, j,k+1)

�zi+1/2, j,k�zi+1/2, j,k+1/2
− �mi+1/2, j,k+1(u

m
i+1/2, j,k−umi+1/2, j,k+1)

�zi+1/2, j,k+1�zi+1/2, j,k+1/2

]

+ ∑
m,i, j

[
�mi, j+1/2,k(v

m
i, j+1/2,k−vmi, j+1/2,k+1)

�zi, j+1/2,k�zi, j+1/2,k+1/2
− �mi, j+1/2,k+1(v

m
i, j+1/2,k−vmi, j+1/2,k+1)

�zi, j+1/2,k+1�zi, j+1/2,k+1/2

]
=0

The correction of Av can then be obtained as

Kv(Avk− Âvk)+(�J/�Avk)/‖�J/�Av‖2=0

i.e.

Avk = Âvk− 1

Kv

(�J/�Avk)/‖�J/�Av‖2=0

where

‖�J/�Av‖2=
(∑

k
(�J/�Avk)2

)1/2

where Avk, Âvk are prior and optimized values of eddy viscosity coefficients, respectively, Kv is
the coefficient that represents the smoothness of eddy viscosity profile in the iteration process and
Kv is taken as 104 in the model which is obtained through a trial-and-error procedure.

4. NUMERICAL EXPERIMENTS AND RESULTS ANALYSIS

4.1. Computing area and data

The computing area in the present study is BNYS, a semi-closed sea between China and the Korean
Peninsula (Figure 3). The space resolution in this model is 1/6◦×1/6◦. The angular frequency of
M2 tide is 1.405189025×10−4 s−1 and the time step of external mode is 372.618 s (1/120 of the
period of M2 tide) and the time step of internal mode is 1490.472 s, four times that of external
mode. T/P altimeter data, tidal gauge data and ship-measured current data are assimilated into
the adjoint tidal model. The tidal gauge data and the T/P process are described by Lu and Zhang
[31]. The bathymetry map of BNYS, the position of T/P satellite tracks, tidal stations, current
observations and open boundaries are all shown in Figure 3. The tide gauge data of this paper are
taken from coastal and island tide stations; hence, in Figure 3 one can find some stations locate
significant distances from the coast. Besides, in the present study we use 10 years of T/P altimeter
data from the beginning of the T/P mission in September 1992 to the completion in September
2002. The harmonic constants of M2 tidal flow are obtained form ship-measured current data (8
days long, hourly data). The tide gauge data are generally based on at least one-year observation
and thus are sufficiently accurate. It should be noted that the experiments in this paper are identical
twin ones; hence, only the position of observations is used and the values are obtained by running
the original dynamic forward model.
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Figure 3. The bathymetric map of BNYS and the position of T/P satellite tracks, tidal stations, current
observations and open boundaries. The dots are the grid points under T/P satellite tracks. The open circles
indicate the current observations. The symbol ‘+’ denotes the coastal and island tidal stations and ‘∗’

stands for the open boundaries.

4.2. Numerical experiments

In this section, the identical twin experiments will be carried out to test the inversion ability and
effectiveness of the adjoint model. Lardner and Das [20] and Lardner and Song [21] also designed
twin experiments for their quasi-3-D adjoint tidal model; however, in their work the computing
area and ocean topography are both idealized. As we know, the topography in the ocean model is
the most fundamental factor. Therefore, in the twin experiments of this paper, the real topography
of BNYS is installed.

The twin experiments are designed as follows. First, a certain distribution of a kind of parameters
is prescribed. Then the forward tidal model is run using the prescribed distributions and the
simulation results at the position of observed data shown in Figure 3 are taken as the ‘observations’
of twin experiments, i.e. only the position of the observed data is used and the values are obtained
by running the original dynamic forward model. Having obtained the ‘observations’, an initial
value is assigned to the parameter to be inverted and the forward simulation is performed. The
difference in water elevation and current velocity between simulated values and ‘observations’
serves as the external force of the adjoint model. The optimized parameters can be obtained
through the backward integration of the adjoint equations. The inverse integral time of the adjoint
equations is equal to a period of M2 tide. With the above procedure repeated, the parameters will
be optimized continuously and the difference between simulated values and ‘observations’ will be
diminished. Meanwhile, the difference between the prescribed and the inverted parameters will
also be decreased. Following sections will describe the inversion of OBC, BFC and vertical eddy
viscosity profile, respectively.
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Figure 4. Values of the function �(�) versus �.

It is important to obtain the right gradient of the cost function with respect to the model
parameters. Let

J (P+�U )= J (P)+�U∇P J (P)+h.o.t. (11)

be a Taylor expansion of the cost function (10) in Section 3.1, where P is a parameter, � is a
small scalar and U is an arbitrary vector of unit length. Rewriting (11) we can define a function
of � given by

�(�)= J (P+�U )− J (P)

�U∇P J (P)
(12)

As mentioned in the work of Smedstad and O’Brien [13], Das and Lardner [17], Lardner and Das
[20] and Lardner and Song [21], if � is chosen close to the machine zero one cannot expect to be
able to verify that the correct gradient has been found. For values of � which are not too close to
the machine zero, one should expect to obtain a value for �(�) which is close to 1. In Figure 4, we
plot the values of �(�) when the BFCs are taken as the example. It can be seen that for � between
10−3 and 10−8, �(�) is close to 1, which means that the correct gradient is therefore found.

4.2.1. Inversion of open boundary conditions. In this section, the Fourier coefficients of OBC at
30 grid points shown in Figure 3 are inverted. The ‘true values’ of Fourier coefficients are taken
from Lu and Zhang [31] in which the M2 tide in BYECS is simulated using a 2-D adjoint tidal
model. Three groups of experiments are carried out. Group 1 discusses the influence of initial
guesses on inversion results and the initial guesses for cases 1–5 in this group are 0, 0.1, −0.1,
0.2 and −0.2, respectively. Group 2 tests the effect of noisy data. To do this, we have replaced
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Figure 5. Inverted OBC for different initial guesses.

each ‘observations’ �̂ni, j , û
m
i, j,k and v̂mi, j,k by (1+ prni, j )�̂

n
i, j , (1+ pr ′m

i, j,k)û
m
i, j,k and (1+ pr ′n

i, j,k)v̂
m
i, j,k ,

respectively, where rni, j and r ′m
i, j,k are uniform random numbers lying in (−1,1) and p is a factor

determining the maximum percentage error. The maximum percentage errors for cases 6–11 in this
group are 3, 6, 10, 13, 16 and 20%, respectively. The relation between the number of ‘observation’
and the inversion result is researched by cases 1, 12 and 14 in Group 3. For case 1, the T/P
‘observations’, the tidal gauge ‘observations’ and the current ‘observations’ are all assimilated, and
for case 12 the current ‘observations’ are not employed. For case 13 only the T/P ‘observations’
are used, and for case 14 only the ‘observations’ of tidal stations are assimilated. The inversion
results of Groups 1–3 are plotted in Figures 5–7, respectively. The average differences between
‘true values’ and inversion results before and after assimilation are shown in Table I. Figure 8
gives the values of cost function J and J/J0 versus iteration steps in these cases, where J0 is the
value of cost function at the first iteration step. The correlation coefficients between ‘true values’
and inversion results are also given in Table I.

From Figures 5–7, one can find that the prescribed OBCs have been successfully inverted in
all cases. This conclusion can also be shown by Table I in which the correlation coefficients
are all larger than 0.85 and the average differences between ‘true values’ and inversion results
are decreased significantly after assimilation. In Group 1, the influence of initial guess is studied
and the correlation coefficients all are larger than 0.93, which indicates that the prescribed OBC
distributions have been inverted successfully. The model in this paper is nonlinear and the cost
function for a nonlinear model is not guaranteed to possess a single minimum. We should find the
global minimum but not a local one. We use very different initial guesses and all the solutions can
converge to the correct one (Figure 5). Meanwhile, Figure 8 shows that by using different initial
guesses the cost function can reach almost the same minimum. However, the new estimates of the
parameters will not deviate far from the values taken by the parameters at the previous iteration.
Therefore, in this sense the parameters’ initial guess should be as reasonable as possible so that
the optimization process can perform efficiently (see, Reference [14]). The effect of observation
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Figure 6. Inverted OBC for different random errors.

Figure 7. Inverted OBC for different number of ‘observations’.

error is discussed in Group 2. The minimum value of correlation coefficients of this group is 0.88
for case 11 in which the maximum percentage error is 20%. We can conclude that, when the
observation error is taken into account, the model can converge the solutions to the correct one.
In some works researchers proposed to insert an additional criterion into the cost function named
the penalty term, which can penalize large fluctuations in the estimated parameters to ensure that
parameters vary smoothly. Lardner and Das [20] pointed out that this term was useful especially
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Table I. The average difference between ‘true values’ and inversion results of Fourier
coefficients before and after assimilation.

Case information Average difference

Initial Random Data Before After Correlation
Exp. guess error (%) number assimilation assimilation coefficient

Case 1 0.0 0 Full 0.400 0.027 0.97
Case 2 0.1 0 Full 0.393 0.029 0.96
Case 3 −0.1 0 Full 0.428 0.026 0.98
Case 4 0.2 0 Full 0.393 0.037 0.93
Case 5 −0.2 0 Full 0.491 0.029 0.94
Case 6 0.0 3 Full 0.400 0.032 0.94
Case 7 0.0 6 Full 0.400 0.036 0.93
Case 8 0.0 10 Full 0.400 0.040 0.91
Case 9 0.0 13 Full 0.400 0.043 0.90
Case 10 0.0 16 Full 0.400 0.047 0.89
Case 11 0.0 20 Full 0.400 0.051 0.88
Case 12 0.0 0 No cur. obs. 0.400 0.027 0.97
Case 13 0.0 0 No TS. and cur. obs. 0.400 0.029 0.96
Case 14 0.0 0 No T/P and cur. obs. 0.400 0.051 0.85

when the data contain observation error. However, the results of Group 2 indicate that the method
described in Section 3.2 can also conquer this difficulty. Meanwhile, the larger the maximum
percentage error becomes, the bigger the difference will be, which can be expected. The number of
‘observations’ is changed in Group 3 and the result shows that the OBC can be inverted only with
the tidal gauge ‘observations’. It indicates that the data in this paper, especially the large amount
of T/P data, are able to constrain the OBC inversion problem. However, as shown by Figure 7,
the result of case 14 has been much worse than those using more ‘observations’, which can also
be indicated by the smallest correlation coefficient 0.85 in Table I. Figure 8 shows that the values
of J and J/J0 have been greatly decreased, which demonstrates the strong inverse ability of this
model.

4.2.2. Inversion of bottom friction coefficients. In this section, the BFC distributions are prescribed
and then are inverted by the model. As described in Section 3.2.1, the BFCs are supposed to
be spatially varying. In fact, as shown by the work of Zhang et al., if the BFC distributions are
complicated in space, the spatially varying BFC is the only way that can successfully invert the
given distributions (see, Reference [46]). Two types of BFC distributions including the revolution
conical surface distribution (ruled surface) and the revolution parabolic surface distribution (quadric
surface) are prescribed. Considering the convex direction, there are four prescribed distributions
totally, which are shown in Figure 9. According to the previous works on the BFC in BNYS, all
the prescribed BFCs are between 0.001 and 0.003. Four groups of experiments are carried out.
Cases 1–4 in Group 1 invert the four prescribed distributions, respectively, and the first distribution
of Figure 9 is taken as the example to be inverted in the other three groups. In Group 2, cases 1
and 5–7 discuss the impact of initial guesses on inversion results and the initial guesses for these
cases are 0.002, 0.001, 0.0015 and 0.0025, respectively. Group 3 tests the effect of data noise and
the maximum percentage errors for cases 8–10 in this group are 4, 8 and 10%, respectively. The
relation between the number of ‘observations’ and the inversion results is researched by cases 1
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Figure 8. The values of J and J/J0 versus the iteration steps.

and 11–13 in Group 4. For case 1 all the ‘observations’ are used, and for case 11 the current
‘observations’ are not employed. For case 12 only the T/P ‘observations’ are assimilated, and
for case 13 only the ‘observations’ of tidal stations are installed. The inversion results of Groups
1–4 are plotted in Figures 10–13, respectively. The average differences between ‘true values’ and
inversion results before and after assimilation are shown in Table II and so are the correlation
coefficients. Figures 14–17 give the contour maps of differences for Groups 1–4 between prescribed
and inverted distributions, respectively.

In this section, the prescribed BFC distributions are inverted and the inversion results indicate
that the adjoint model has a strong ability to invert the BFC by optimizing the spatially varying
BFC. The complicate BFC distributions are inverted successfully in all cases. All the correlation
coefficients are larger than 0.93 except case 10. Obviously the inversion would not succeed if the
BFCs were supposed to be a constant over the whole domain or different constants in different
subdomains. In Group 1 the four different distributions are inverted by cases 1–4, respectively,
and we can get the following details based on the inversion results. For surfaces of different types,
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Figure 9. The four prescribed BFC distributions.

Figure 10. Inverted BFC for different distributions.
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Figure 11. Inverted BFC for different initial guesses.

Figure 12. Inverted BFC for different random errors.
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Figure 13. Inverted BFC for different number of ‘observations’.

Table II. The average difference between ‘true values’ and inversion results
of BFC before and after assimilation.

Case information Average difference

Initial Random Data Before After Correlation
Exp. guess error (%) number assimilation assimilation coefficients

Case 1 0.002 0 Full 2.90E−04 3.74E−05 0.99
Case 2 0.002 0 Full 2.90E−04 4.14E−05 0.98
Case 3 0.002 0 Full 5.60E−04 9.57E−05 0.93
Case 4 0.002 0 Full 5.60E−04 9.91E−05 0.92
Case 5 0.001 0 Full 9.07E−04 5.79E−05 0.98
Case 6 0.0015 0 Full 4.51E−04 4.66E−05 0.98
Case 7 0.0025 0 Full 6.03E−04 8.43E−05 0.95
Case 8 0.002 4 Full 2.90E−04 5.82E−05 0.97
Case 9 0.002 8 Full 2.90E−04 7.43E−05 0.93
Case 10 0.002 10 Full 2.90E−04 9.12E−04 0.81
Case 11 0.002 0 No cur. obs. 2.90E−04 4.33E−05 0.98
Case 12 0.002 0 No TS. and cur. obs. 2.90E−04 4.36E−05 0.98
Case 13 0.002 0 No T/P and cur. obs. 2.90E−04 6.32E−05 0.97

the inversion results of revolution conical surfaces are better than those of revolution parabolic
surfaces. We think the reason is that the revolution parabolic surfaces are more complicated than
the conical ones. For surfaces of the same type, the inversion results of the upward convex surfaces
are better than those of the downward ones. Perhaps, it is because the upward convex surface
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Figure 14. The differences between prescribed BFC and inversion results for Group 1.

Figure 15. Same as Figure 14, but for Group 2.
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Figure 16. Same as Figure 14, but for Group 3.

Figure 17. Same as Figure 14, but for Group 4.
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distributions are more reasonable to adapt to the real ocean topography. The same phenomenon
has been pointed out in the work of Lu and Zhang [31]. The conclusions deduced from Groups 2
and 4 are similar to those of Section 4.2.1. In Group 2 we change the initial guesses and all the
solutions have converged to the correct one (Figure 11), which can be proved by the correlation
coefficients that are larger than 0.95 for case 7. In Group 4, when the number of data is reduced,
the BFC can still be inverted successfully, even when only the tidal gauge data are used. In this
paper, the independent BFCs are selected uniformly over each 1◦×1◦ area and the number of
independent BFCs is a result of a trial-and-error procedure. Therefore, based on the results of
Group 4, we can state that the amount of data is plenty enough to constrain the BFC inversion
problem. However, if random errors are introduced into the ‘observations’, the inversion results
of BFC are not as good as those of OBC. In Section 4.2.1, when the maximum percentage error
is 20%, the inversion results are still satisfactory and the correlation coefficient is 0.85. In this
section, the correlation coefficient is 0.81 for case 10 when the maximum percentage error is 10%.
It indicates that the inversion of BFC might be unbelievable if the error gets larger than 10%. Thus,
we can conclude that the inversion of BFC is more sensitive to data noise than that of OBC.

4.2.3. Inversion of vertical eddy viscosity profile. In this section, four groups of experiments are
carried out to invert the prescribed vertical eddy viscosity profiles. The number of vertical levels
inside the water column is taken as 8. In Group 1, four kinds of distributions are prescribed and
they are inverted by cases 1–4, respectively. In Group 2, cases 5–11 discuss the impact of noisy
data on inversion results and the maximum percentage errors for these cases are 0, 3, 5, 8, 10, 13
and 15%, respectively. Group 3 tests the effect of initial guesses and the initial guesses for case 1,
case 5 and case 12 in this group are 0.002, 0.0055 and 0.0038, respectively. The relation between
the number of ‘observations’ and the inversion results is studied by cases 2, 13 and 14 in Group
4. For case 2 all the ‘observations’ are assimilated. For case 13 only the ‘observations’ of tidal
stations and one current ‘observation’ are employed, and the number of current ‘observation’ is
three for case 14. The inversion results of Groups 1–4 are plotted in Figures 18–21, respectively.
The average differences between ‘true values’ and inversion results before and after assimilation
are shown in Table III, where the correlation coefficients are also exhibited.

The inversion of vertical eddy viscosity coefficients has obtained satisfactory results. From
Table III one can find that after assimilation the average differences have been decreased greatly
and the correlation coefficients between inversion results and prescribed distributions all are larger
than 0.87. In Group 1 the four different prescribed distributions are inverted. The results of cases
1 and 2 are better than those of cases 3 and 4. The most probable reason is that the first and the
second distributions are simpler than the other two. The effect of data noise is tested in Group 2 and
from Figure 19 we can find that when the maximum percentage error is less than 10%, only a tiny
difference lies among the inversion results of cases 5–9. However, when the maximum percentage
error is increased from 10 to 13% of case 10, the average differences between inversion results
and ‘true values’ sharply increased from 1.55E−04 to 2.96E−04, while the correlation coefficient
decreased from 0.98 to 0.90. But we think the results of cases 10 and 11 are still reasonable. Group
3 discusses the influence of initial guesses on inversion and the correlation coefficients for cases
1, 5 and 12 are 0.98, 0.99 and 0.98, respectively. In addition, the large correlation coefficients
demonstrate that the data used are plenty to constrain the eddy viscosity coefficient inversion
problem in this section. The results of Group 4 can be expected. In cases 13 and 14, the T/P
‘observations’ are excluded and the number of current ‘observations’ are 1 and 3, respectively.
The inversion result of case 14 is satisfactory and the correlation coefficient equals that of case
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Figure 18. Inverted vertical eddy viscosity coefficient for different distributions.

2 in which all the ‘observations’ are used. However, Figure 21 indicates that when the number
of current ‘observations’ is decreased to 1, the inversion result of case 13 has been distorted
and the correlation coefficient is sharply decreased from 0.98 to 0.87. We calculate the average
difference of each layer in all cases and the values from the surface layer to the bottom layer are
3.23E−5,1.39E−4,5.06E−5,1.08E−4,2.45E−4,2.81E−4,1.99E−4 and 2.23E−4, respectively.
Obviously, the inversion results of the upper four layers are better than those of the other four
layers. However, in the work of Richardson and Panchang, they put forward a problem that if the
wind forcing was absent and the model was driven by tidal forcing alone, they could not obtain
good estimates of eddy viscosity except at lower levels of the water column [33]. The reason for
this is probably that the models used in two works are different. The model for their work is a
coastal circulation model. The better inversion for the upper layers in this paper, we guess, may
be due to the using of large amount of surface elevation data. If the sea surface elevation can be
simulated accurately, it will benefit the whole adjoint system.
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Figure 19. Inverted vertical eddy viscosity coefficient for different random errors.

Figure 20. Inverted vertical eddy viscosity coefficient for different initial guesses.

4.3. Discussion on the numerical experiments

In Section 3.2.1, the coefficient Kc represents the smoothness in the iterative process. In our model
the gradient �L/�bii, j j is normalized first by ‖�J/�b‖2, which means that mainly the direction
of the gradient is used when the optimization is performed. A small positive value is assigned to
1/Kc in order to ensure that cost function can decrease continuously without large fluctuations
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Figure 21. Inverted vertical eddy viscosity coefficient for different number of ‘observations’.

Table III. The average difference between ‘true values’ and inversion results of vertical eddy viscosity
coefficients before and after assimilation.

Case information Average Difference

Initial Random Data Before After Correlation
Exp. guess error (%) number assimilation assimilation coefficient

Case 1 0.002 0 Full 1.83E−03 2.33E−04 0.98
Case 2 0.002 0 Full 1.83E−03 2.49E−04 0.98
Case 3 0.002 0 Full 1.83E−03 3.26E−04 0.89
Case 4 0.002 0 Full 1.83E−03 2.90E−04 0.93
Case 5 0.0055 0 Full 1.67E−03 6.69E−05 0.99
Case 6 0.0055 3 Full 1.67E−03 1.30E−04 0.98
Case 7 0.0055 5 Full 1.67E−03 1.59E−04 0.98
Case 8 0.0055 8 Full 1.67E−03 1.39E−04 0.98
Case 9 0.0055 10 Full 1.67E−03 1.55E−04 0.98
Case 10 0.0055 13 Full 1.67E−03 2.96E−04 0.90
Case 11 0.0055 15 Full 1.67E−03 3.95E−04 0.88
Case 12 0.0038 0 Full 8.53E−04 2.50E−04 0.98
Case 13 0.002 0 No T/P, 1 cur. obs. 1.83E−03 6.24E−04 0.87
Case 14 0.002 0 No T/P, 3 cur. obs. 1.83E−03 1.43E−04 0.98

(see, Reference [31]). In Section 4.2.2 where the prescribed BFC distributions are inverted, 1/Kc
is taken as 10−4, i.e. Kc=104 which is obtained through a trial-and-error procedure. Ka , Kb
in Section 3.2.2 and Kv in Section 3.2.3 are taken as 20.0,20.0 and 104, respectively, which
all are obtained through a trial-and-error procedure. In our model, we monitor the convergence
by examining the cost function and terminate the iteration when the change of cost function
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becomes very small. Obviously, the number of iteration steps that is needed to invert the prescribed
distributions successfully is closely related to smoothness coefficients and the initial values of
given parameters. In the experiments of Section 4.2, in order to compare the inversion results all
the iteration processes are terminated at the 100th step because the values of cost function will
decrease very slowly at this step (the difference between the values of J/J0 of two adjoint steps
has been less than 10−4); therefore, it is worthless to continue the optimization. In Section 4.2.1,
Figure 8 gives the values of cost function J and J/J0 versus the iteration steps. One can find that
around the 100th step the values of cost function are almost unchanged and nearly all the cost
functions have reached the same minimum value. What should be noted is that there are no large
fluctuations in the decreasing of cost function.

With identical twin experiments, the data are perfect in the sense that they are obtained from
the model and thus are consistent with the model physics. However, one can find that even when
we add zero noise to the observations, the model cannot produce the exact parameter estimates.
In the twin experiments, we mainly discuss the inversion of three kinds of parameters in the tidal
model. When one kind of parameter is inverted, we try to reduce the influence of the other factors.
However, it is difficult for us to do it completely. Take the inversion of BFC for example. In the
cases of Section 4.2.2, the real topography of BNYS and the ‘real’ OBC have been installed.
Although the OBC and the topography are fixed all the time, the inversion can also be influenced
by them. As we know, the BFC should dissipate the energy propagating from the open boundary to
maintain the tidal system. However, the initial values of BFC are just given by experience and the
prescribed BFC distributions are just the analytical function of the horizontal spatial coordinates.
Therefore, the initial BFC and the inverted BFC cannot suit the ‘real’ M2 tide in the process of
inversion exactly and the inversion must have been distorted. That is to say, the BFC is the major
but not the unique determining factor in the inversion of Section 4.2.2. Thus from Figures 10–13,
one can find that the inversion results are not exactly equal to the prescribed BFC and there is a
large amount of small-scale variability that is not present in Figure 9. We have done a case where
the uniform boundary forcing is applied and the two Fourier coefficients are taken as the parameters
and estimated, and the results demonstrate that the two parameters can be inverted exactly. In this
case the prescribed values of both Fourier coefficients are 0.2, the maximum percentage error is
20%, the initial value is 0.4 and the data used are just the tidal gauge data. The model has produced
the exact parameter estimation. As the boundary forcing becomes more spatially variable (thus
requiring more parameters), the inversion would become less exact, which can be expected. In the
work of Smedstad and O’Brien where the spatially distributed phase speed in an equatorial Pacific
Ocean model was estimated, they could not produce the exact values either, even when perfect
observations were available at every gridpoint of the model (see, Reference [13]). We think it is
normal if one seeks parameters distributed in space and time domain.

Tihonov proved that if the forward model is linear in the parameters, the solution to the inverse
problem exists, is unique, and depends continuously on the measurements [47, 48]. The numerical
results of underground water inverse problem also demonstrate that when perfect observation is
assimilated, the cost function for the linear problem is convex and thus the solution is unique.
However, if the observation error is taken into account, the cost function of the inverse problem
might be nonconvex and the solution might be nonunique, even when the forward model is
linear. Besides, the parameter estimation problem might be beset by nonuniqueness problem if the
parameters are supposed to be temporal or spatial [32]. In this paper, from the results of numerical
experiments where the effect of initial guesses are discussed, one can find that the solutions using
very different initial guesses have all converged to the correct one (Figures 5, 11 and 20). Therefore

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:47–92
DOI: 10.1002/fld



PARAMETER ESTIMATION FOR A 3-D NUMERICAL BAROTROPIC TIDAL MODEL 75

we can state that if the observed data are perfect, the solutions to the inverse problems in this paper
are unique. However, if the observed data are contaminated by the noise, the solutions could not
converge to the correct one, especially when the maximum percentage error is too large (Figures
6, 12 and 19).

5. CONCLUSIONS

In this paper we construct a 3-D adjoint tidal model and the parameters of the model are estimated
using the adjoint assimilation method. Among all the data assimilation methods, 4DVAR data
assimilation is one of the most effective and powerful approaches. It is an advanced data assimilation
method that involves the adjoint method and has the advantage of directly assimilating various
observations distributed in time and space into numerical models while maintaining dynamical
and physical consistency with the model. The mode splitting technique is employed in both the
forward model and the adjoint model. In the external mode the ADI method is used to discretize
the 2-D depth-averaged equations and a semi-implicit scheme is employed for the 3-D internal
mode computations. The bottom friction is expressed in terms of bottom velocity, which is different
from the previous works. Besides, the BFCs are supposed to be spatially varying, i.e. the BFCs
at some grid points are selected as the independent BFCs, while the BFCs at other grid points
can be obtained through linear interpolation. Based on the simulation of M2 tide in BNYS,
twin experiments are carried out to invert the prescribed distributions of model parameters. The
parameters inverted are the Fourier coefficients of OBC, the BFC and the vertical eddy viscosity
profiles. In these twin experiments, the real topography of BNYS is installed. The experiments
discuss the influence of initial guesses, model errors and data number on the inversion. The
inversion has obtained satisfactory results and the prescribed distributions have been successfully
inverted, which demonstrates the strong ability of the adjoint method. The results indicate that
the inversion of BFC is more sensitive to data error than that of OBC and vertical eddy viscosity
profiles. Future work will concentrate on the practical application of this model.

APPENDIX A: COMPUTATION OF FORWARD MODEL

A.1. Computation of external mode

In this model, ADI method is used in the discretization of external mode. ADI method results in
computational efficiency superior to fully explicit methods because their improved stability allows
large time step to be employed. Equations (7)–(9) are discretized as follows.

When the time step is from n to n+1, � and U are calculated implicitly, and V are calculated
explicitly. The finite difference schemes for calculating � and U take the form

�n+1
i, j + Hxni+1/2, j�t

a j��
Un+1
i+1/2, j −

Hxni−1/2, j�t

a j��
Un+1
i−1/2, j

=�ni, j −
�t

a j��
(Hyni, j+1/2V

n
i, j+1/2 cos� j+1/2−Hyni, j−1/2V

n
i, j−1/2 cos� j−1/2) (A1)
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Un+1
i+1/2, j +

g�t

a j��
�n+1
i+1, j −

g�t

a j��
�n+1
i, j

=Un
i+1/2, j +�t[ f j (V n

i, j )
∗+Ah�U

n
i+1/2, j −Lxi+1/2, j −Rxi+1/2, j ] (A2)

where Hxni+1/2, j =hxi+1/2, j +(�ni, j +�ni+1, j )/2, Hyni, j+1/2=hyi, j+1/2+(�ni, j +�ni, j+1)/2, and the
symbol ‘∗’ stands for the four-point average, i.e.

(V n
i, j )

∗ =(V n
i, j+1/2+V n

i, j−1/2+V n
i+1, j−1/2+V n

i+1, j+1/2)/4

(A1) and (A2) can be written in the more compact matrix form

XiU
n+1
i−1/2, j +�i�

n+1
i, j +�iU

n+1
i+1/2, j =�i (A3)

X′
i�

n+1
i, j +�′

iU
n+1
i+1/2, j +�′

i�
n+1
i+1, j =�′

i (A4)

where Xi =−Hxni−1/2, j�t/a j��,�i =1,�i =Hxni+1/2, j�t/a j��, X′
i =−g�t/a j��,�′

i =1,�′
i =

g�t/a j�� and �i , �′
i are the right parts of (A1) and (A2), respectively. (A3) and (A4) constitute

a tridiagonal system that can be solved efficiently. Having solved it, �n+1 and Un+1 can thus be
obtained.

V n+1 are solved by the following explicit scheme:

V n+1
i, j+1/2 = V n

i, j+1/2−
g�t

R��
(�n+1

i, j+1−�n+1
i, j )

+�t[−Lyi, j+1/2−Ryi, j+1/2− f j (U
n+1
i, j )∗+Ah�V

n
i, j+1/2] (A5)

From n+1 to n+2, � and V are calculated implicitly, and U are solved explicitly. The finite
difference schemes for calculating � and V take the form

�n+2
i, j + �t

a j��
(Hyn+1

i, j+1/2V
n+2
i, j+1/2 cos� j+1/2−Hyn+1

i, j−1/2V
n+2
i, j−1/2 cos� j−1/2)

=�n+1
i, j − Hxn+1

i+1/2, j�t

a j��
Un+1
i+1/2, j −

Hxn+1
i−1/2, j�t

a j��
Un+1
i−1/2, j (A6)

V n+2
i, j+1/2+

g�t

R��
�n+2
i, j+1− g�t

R��
�n+2
i, j

=V n+1
i, j+1/2+�t[−Lyi, j+1/2−Ryi, j+1/2− f j (U

n+1
i, j )∗+Ah�V

n+1
i, j+1/2] (A7)

Or, in matrix notation,

BjV
n+2
i, j−1/2+K j�

n+2
i, j +OjV

n+2
i, j+1/2=� j (A8)

B ′
j�

n+2
i, j +K′

j V
n+2
i, j+1/2+O ′

j�
n+2
i, j+1=�′

j (A9)
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where

Bj =−�t Hyn+1
i, j−1/2 cos� j−1/2

a j��
, K j =1, Oj =

�t Hyn+1
i, j+1/2 cos� j+1/2

a j��

B ′
j =− g�t

R��
, K ′

j =1, O ′
j =

g�t

R��

and � j ,�′
j are the right parts of (A6) and (A7), respectively. Equations (A8) and (A9) form a

tridiagonal system that can be solved efficiently. Having solved it, �n+2 and V n+2 can then be
obtained.

Un+2 are calculated by the following explicit scheme:

Un+2
i+1/2, j =Un+1

i+1/2, j −
g�t

a j��
(�n+2

i+1, j −�n+2
i, j )+�t[ f j (V n+2

i, j )∗

+ Ah�U
n+1
i+1/2, j −Lxi+1/2, j −Rxi+1/2, j ] (A10)

It should be noticed that Lx , Ly, Rx and Ry are unchanged from n=n∗+1 to n=n∗+q ,
where n∗ =q×m and m is the index of internal mode. Their expressions will be given in the next
section.

A.2. Computation of internal mode

The discretization of internal mode is similar to that of Casulli and Cheng [3], in which the
convective, Coriolis and horizontal viscosity terms in the momentum equations were discretized
explicitly and the vertical mixing term was discretized implicitly in order to eliminate a stability
condition due to the vertical eddy viscosity. Then we can obtain the finite difference schemes of
Equations (1)-(3) as follows.

Assuming k is the index of vertical layers, for the surface layer (k=1) the discretization takes
the form

[
(�zi+1/2, j,1+�m+1/2

i, j )+ �TAvi, j,3/2
�zi+1/2, j,3/2

]
um+1
i+1/2, j,1+

(
− �TAvi, j,3/2

�zi+1/2, j,3/2

)
um+1
i+1/2, j,2

=(�zi+1/2, j,1+�m+1/2
i, j )

[
Fumi+1/2, j,1−

g�T

a j��
(�m+1/2

i+1, j −�m+1/2
i, j )

]
(A11)

[
(�zi, j+1/2,1+�m+1/2

i, j )+ �TAvi, j,3/2
�zi, j+1/2,3/2

]
vm+1
i, j+1/2,1+

(
− �TAvi, j,3/2

�zi, j+1/2,3/2

)
vm+1
i, j+1/2,2

=(�zi, j+1/2,1+�m+1/2
i, j )

[
Fvmi, j+1/2,1−

g�T

R��
(�m+1/2

i, j+1 −�m+1/2
i, j )

]
(A12)
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For the middle layers (1<k<Kx and 1<k<Ky),

− �TAvi, j,k−1/2

�zi+1/2, j.k−1/2
um+1
i+1/2, j,k−1+

(
�zi+1/2, j,k+ �TAvi, j,k−1/2

�zi+1/2, j.k−1/2
+ �TAvi, j,k+1/2

�zi+1/2, j.k+1/2

)
um+1
i+1/2, j,k

− �TAvi, j,k+1/2

�zi+1/2, j.k+1/2
um+1
i+1/2, j,k+1=�zi+1/2, j,k

[
Fumi+1/2, j,k− g�T

a j��
(�m+1/2

i+1, j −�m+1/2
i, j )

]
(A13)

− �TAvi, j,k−1/2

�zi, j+1/2,k−1/2
vm+1
i, j+1/2,k−1+(�zi, j+1/2,k+ �TAvi, j,k−1/2

�zi, j+1/2,k−1/2
+ �TAvi, j,k+1/2

�zi, j+1/2,k+1/2
)vm+1

i, j+1/2,k

− �TAvi, j,k+1/2

�zi, j+1/2,k+1/2
vm+1
i, j+1/2,k+1=�zi, j+1/2,k

[
Fvmi, j+1/2,k− g�T

R��
(�m+1/2

i, j+1 −�m+1/2
i, j )

]
(A14)

For the bottom layer (k=Kx and k=Ky),

− �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2
um+1
i+1/2, j,Kx−1+

(
�zi+1/2, j,Kx + �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2

+ �TCd [u2i+1/2, j,Kx +(v∗
i, j,Kx )

2]1/2
)
um+1
i+1/2, j,Kx

=�zi+1/2, j,Kx

[
Fumi+1/2, j,Kx − g�T

a j��
(�m+1/2

i+1, j −�m+1/2
i, j )

]
(A15)

− �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2
vm+1
i, j+1/2,Ky−1+

(
�zi, j+1/2,Ky+ �TAvi, j+1/2,Ky−1/2

�zi, j+1/2,Ky−1/2

+ �TCd [v2i, j+1/2,Kx +(u∗
i, j,Kx )

2]1/2
)

vm+1
i, j+1/2,Ky

=�zi, j+1/2,Ky

[
Fvmi, j+1/2,Ky−

g�T

R��
(�m+1/2

i, j+1 −�m+1/2
i, j )

]
(A16)

Fu and Fv contain the convective, horizontal viscosity and Coriolis terms of Equations (1) and
(2) which are discretized explicitly

Fumi+1/2, j,k = umi+1/2, j,k+�T (−lxmi+1/2, j,k+Ah�u
m
i+1/2, j,k+2�sin� j (v

m
i, j,k)

∗)

Fvmi, j+1/2,k = vmi, j+1/2,k+�T (−lymi, j+1/2,k+Ah�vmi, j+1/2,k−2�sin� j (u
m
i, j,k)

∗)

In detail, the convective terms are discretized using the upwind schemes as follows:

lxmi+1/2, j,k = tu1+ tu2+ tu3− (vmi, j,k)
∗umi+1/2, j,k tan� j

R
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lymi, j+1/2,k = tv1+ tv2+ tv3+ (umi, j,k)
∗(umi, j,k)∗ tan� j+1/2

R

where
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tv3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(wm
i, j,1−1/2+wm

i, j+1,1−1/2+wm
i, j,1+1/2+wm

i, j+1,1+1/2)(v
m
i, j+1/2,2−vmi, j+1/2,1)

4�zi, j+1/2,3/2

k=1

1

4

[
(wm

i, j,k−1/2+wm
i, j+1,k−1/2)(v

m
i, j+1/2,k−vmi, j+1/2,k−1)

�zi, j+1/2,k−1/2

+ (wm
i, j,k+1/2+wm

i, j+1,k+1/2)(v
m
i, j+1/2,k+1−vmi, j+1/2,k)

�zi, j+1/2,k+1/2

]

k=2,3, . . . ,Kyi, j+1/2

The discretization of horizontal viscosity terms takes the form

�umi+1/2, j = umi+1/2+1, j −2umi+1/2, j +umi+1/2−1, j

(a j��)2

+ (umi+1/2, j+1−umi+1/2, j )cos� j+1/2−(umi+1/2, j −umi+1/2, j−1)cos� j−1/2

(R��)2 cos� j

�vmi, j+1/2 = vmi+1, j+1/2−2vmi, j+1/2+vmi−1, j+1/2

(a j��)2

+ (vmi, j+1/2+1−vmi, j+1/2)cos� j+1/2−(vm‘
i, j+1/2−vmi, j+1/2−1)cos� j−1/2

(R��)2 cos� j

Schemes (A11)–(A16) can be written in the more compact matrix form, and at u-points the
finite difference schemes are given by

E1u
m+1
i+1/2, j,1+T1u

m+1
i+1/2, j,2 = F1(k=1)

Aku
m+1
i+1/2, j,k−1+Eku

m+1
i+1/2, j,k+Tku

m+1
i+1/2, j,k+1 = Fk(k=2,3, . . . ,Kx−1)

AKxu
m+1
i+1/2, j,Kx−1+EKxu

m+1
i+1/2, j,Kx = FKx (k=Kx)

(A17)

At v-points they are given by

E ′
1v

m+1
i, j+1/2,1+T ′

1v
m+1
i, j+1/2,2 = F ′

1(k=1)

A′
kv

m+1
i, j+1/2,k−1+E ′

kv
m+1
i, j+1/2,k+T ′

kv
m+1
i, j+1/2,k+1 = F ′

k(k=2,3, . . . ,Ky−1)

A′
Kyv

m+1
i, j+1/2,Ky−1+E ′

Kyv
m+1
i, j+1/2,Ky = F ′

Ky(k=Ky)

(A18)

where

E1=(�zi+1/2, j,1+�m+1/2
i, j )+ �TAvi, j,3/2

�zi+1/2, j,3/2
, T1=− �TAvi, j,3/2

�zi+1/2, j,3/2
, Ak =− �TAvi, j,k−1/2

�zi+1/2, j,k−1/2
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Ek =�zi+1/2, j,k+ �TAvi, j,k−1/2

�zi+1/2, j,k−1/2
+ �TAvi, j,k+1/2

�zi+1/2, j,k+1/2

Tk =− �TAvi, j,k+1/2

�zi+1/2, j,k+1/2
, AKx =− �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2

EKx =�zi+1/2, j,Kx + �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2
+�TCd [u2i+1/2, j,Kx +(v∗

i, j,Kx )
2]1/2

E ′
1=(�zi, j+1/2,1+�m+1/2

i, j )+ �TAvi, j,3/2
�zi, j+1/2,3/2

, T ′
1=− �TAvi, j,3/2

�zi, j+1/2,3/2
, A′

k =− �TAvi, j,k−1/2

�zi, j+1/2,k−1/2

E ′
k =�zi, j+1/2,k+ �TAvi, j,k−1/2

�zi, j+1/2,k−1/2
+ �TAvi, j,k+1/2

�zi, j+1/2,k+1/2

T ′
k =− �TAvi, j,k+1/2

�zi, j+1/2,k+1/2
, A′

Ky =− �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2

E ′
Ky =�zi, j+1/2,Ky+ �TAvi, j+1/2,Ky−1/2

�zi, j+1/2,Ky−1/2
+�TCd [v2i, j+1/2,Kx +(u∗

i, j,Kx )
2]1/2

F1,Fk,Fkx ,F ′
1,F

′
k and F ′

ky equal to the right parts of (A11)–(A16), respectively. Equations (A17)

and (A18) are both tridiagonal systems that can be solved efficiently. After that, um+1 and vm+1

can be obtained.
Then the model-produced u and v are adjusted to coincide with the U and V of external mode.

The adjusting is given by

(um+1
i+1/2, j,k)

′ =um+1
i+1/2, j,k+
ui+1/2, j , (vm+1

i, j+1/2,k)
′ =vm+1

i, j+1/2,k+
ui, j+1/2 (A19)

where


ui+1/2, j =Ui+1/2, j − 1

Hxi+1/2, j

K x∑
k=1

{[�zi+1/2, j,k+�k(�i, j +�i+1, j )/2]um+1
i+1/2, j,k}


vi, j+1/2 = Vi, j+1/2− 1

Hyi, j+1/2

Ky∑
k=1

{[�zi, j+1/2,k+�k(�
+
i, j�i, j+1)/2]vm+1

i, j+1/2,k}

In the following computations, the values used are u′ and v′; however, we will still use the
expressions u and v for simplicity.

Finally, by discretizing the continuity equation (3), the vertical component of the velocity w at
the new time level is given by

wm+1
i, j,k−1/2 = wm+1

i, j,k+1/2+
�zi+1/2, j,k+�k�

m+1/2
i, j

a j

(
um+1
i+1/2, j,k−um+1

i−1/2, j,k

��

− vn+1
i, j+1/2,k cos� j+1/2−vn+1

i, j−1/2,k cos� j−1/2

��

)
(k=1,2, . . . ,Mi, j ) (A20)
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Lx, Ly, Rx and Ry in Appendix A.1 are calculated in the internal mode. In detail, Lx and Ly
are the depth average of lx and ly, respectively, and their expressions are given by the following
formulas:

Lxmi+1/2, j,k =
∑Kx

k=1 [lxmi+1/2, j,k(�zi+1/2, j,k+�k�i, j )]
Hxi+1/2, j

Lymi, j+1/2,k =
∑Ky

k=1 [lymi, j+1/2,k(�zi, j+1/2,k+�k�i, j )]
Hyi, j+1/2

In the previous works on the 3-D adjoint tidal model [20, 21], the bottom friction is expressed
in terms of depth-integrated velocities. However, for the bottom friction, turbulent boundary layer
models of the near-bottom flow indicate that it is physically realistic to use a quadratic dependence
of bottom friction on the bottom velocity. Therefore, the bottom friction is expressed in terms of
bottom velocity in our model. For internal mode, the bottom friction is given by (6) and has the
form

R′xi+1/2, j =Cd [u2i+1/2, j,Kx +(v∗
i, j,Kx )

2]1/2ui+1/2, j,Kx

R′yi, j+1/2=Cd [v2i, j+1/2,Ky+(u∗
i, j,Ky)

2]1/2vi, j+1/2,Ky

In the external mode, the bottom friction is the depth average of R′x and R′y and has the following
expression:

Rxi+1/2, j =
Rx ′

i+1/2, j

Hxi+1/2, j
, Ryi, j+1/2= Ry′

i, j+1/2

Hyi, j+1/2

APPENDIX B: DERIVATION OF ADJOINT MODEL

B.1. External mode of adjoint model

In AE, �,	,
 are calculated by

�L
��

=0,
�L
�U

=0,
�L
�V

=0 (B1)

ADI method is also employed to solve Equations (B1) and the computation process is similar to
that of FE in Appendix A1.

When the time step is from n+1 to n, � and 	 are calculated implicitly, and 
 are calculated
explicitly. The finite difference schemes for calculating � and 	 take the form

g�t

a j��
	ni−1/2, j +�ni, j −

g�t

a j��
	ni+1/2, j

=�n+1
i, j − �t K�Di, j (�

n
i, j − �̂ni, j )+

g�t

R��
(
n+1

i, j+1/2−
n+1
i, j−1/2)+Yi, j (B2)
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Hn
i, j�t

a j��
�ni, j +	ni+1/2, j −

Hn
i+1, j�t

a j��
�ni+1, j

=	n+1
i+1/2, j + �t[− f j (


n+1
i, j )∗+Ah�	n+1

i+1/2, j −aLxi+1/2, j −aRxi+1/2, j ] (B3)

(B2) and (B3) can be rewritten in the matrix form as

Xi	
n
i−1/2, j +�i�

n
i, j +�i	

n
i+1/2, j = �i (B4)

X ′
i�

n
i, j +�′

i	
n
i+1/2, j +�′

i�
n
i+1, j = �′

i (B5)

where Xi =g�t/a j��,�i =1,�i =−g�t/a j��, X ′
i =Hn

i, j�t/a j��,�′
i =1,�′

i =−Hn
i+1, j�t/

a j��, and �i ,�′
i equal to the right sides of (B2) and (B3), respectively. 	n and �n can be obtained

by solving the tridiagonal systems of (B4) and (B5).

n are calculated by the following explicit scheme:


ni, j+1/2 = 
n+1
i, j+1/2+

�t

a j��
(Hn

i, j+1�
n+1
i, j+1 cos� j+1/2−Hn

i, j�
n+1
i, j cos� j−1/2)

+�t[ f j (	n+1
i, j )∗+Ah�
n+1

i, j+1/2−aLyi, j+1/2−aRyi, j+1/2] (B6)

From n to n−1, � and 
 are calculated implicitly, and 	 are calculated explicitly. The finite
difference schemes for calculating �,
 are given by

g�t

R��

n−1
i, j−1/2+�n−1

i, j − g�t

R��

n−1
i, j+1/2

=�ni, j − �t K�Di, j (�
n−1
i, j − �̂n−1

i, j )+ g�t

a j��
(	ni+1/2, j −	ni−1/2, j )+Yi, j (B7)

Hn−1
i, j cos� j−1/2�t

a j��
�n−1
i, j +
n−1

i, j+1/2− Hn−1
i, j+1 cos� j+1/2�t

a j��
�n−1
i, j+1

=
ni, j+1/2+ �t[ f j (	ni, j )∗+Ah�
ni, j+1/2−aLyi, j+1/2−aRyi, j+1/2] (B8)

The matrix notation of (B7) and (B8) is given by

Bj

n−1
i, j−1/2+K j�

n−1
i, j +Oj


n−1
i, j+1/2 = � j (B9)

B ′
j�

n−1
i, j +K ′

j

n−1
i, j+1/2+O ′

j�
n−1
i, j+1 = �′

j (B10)

where Bj =g�t/R��,K j =1,Oj =−g�t/R��, B ′
j =Hn−1

i, j cos� j−1/2�t/a j��,K ′
j =1,O ′

j =
−Hn−1

i, j+1 cos� j+1/2�t/a j��, and � j ,�′
j equal to the right parts of (B7) and (B8), respectively.
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Equations (B9) and (B10) constitute a tridiagonal system that can be easily solved. Having solved
it, �n−1 and 
n−1 can then be obtained.

	n−1 are solved by the following explicit scheme:

	n−1
i+1/2, j = 	ni+1/2, j +

�t

a j��
(Hn−1

i+1, j�
n
i+1, j −Hn−1

i, j �ni, j )

+�t[− f j (

n
i, j )

∗+Ah�	n+1
i+1/2, j −aLxi+1/2, j −aRxi+1/2, j ] (B11)

Yi, j ,aLxi+1/2, j ,aLyi, j+1/2,,aRxi+1/2, j ,aRyi, j+1/2 of Equations (B2)–(B11) that are calcu-
lated in AI will keep unchanged from n=n′+q,n′+q−1, . . . ,n′+1 (n′ =q×m), and their expres-
sions will be given in the next section.

B.2. Internal mode of adjoint model

The numerical schemes of AI are given by

�L
�u

=0,
�L
�v

=0 (B12)

where � and � are calculated. We also assume that k is the index of vertical layers. For the surface
layer (k=1), the discretization takes the form[

(�zi+1/2, j,1+�m+1/2
i, j )+ �TAvi, j,3/2

�zi+1/2, j,3/2

]
�mi+1/2, j,1+

(
− �TAvi, j,3/2

�zi+1/2, j,3/2

)
�mi+1/2, j,2

=(�zi+1/2, j,1+�m+1/2
i, j )�m+1

i+1/2, j,1−(�zi+1/2, j,1+�m+1/2
i, j )�T [alxm+1

i+1/2, j,1+ f j (�
m+1
i, j,1 )

∗

− Ah��m+1
i+1/2, j,1+KuD

′
i+1/2, j,1(u

m
i+1/2, j,1− ûmi+1/2, j,1)+zxm+1/2

i+1/2, j,1] (B13)

[
(�zi, j+1/2,1+�m+1/2

i, j )+ �TAvi, j,3/2
�zi, j+1/2,3/2

]
�mi+1/2, j,1+

(
− �TAvi, j,3/2

�zi, j+1/2,3/2

)
�mi+1/2, j,2

=(�zi, j+1/2,1+�m+1/2
i, j )�m+1

i, j+1/2,1−(�zi, j+1/2,1+�m+1/2
i, j )�T [alym+1

i, j+1/2,1− f j (�
m+1
i, j,1 )

∗

− Ah��m+1
i, j+1/2,1+KvD

′
i, j+1/2,1(v

m
i, j+1/2,1− v̂mi, j+1/2,1)+zym+1/2

i, j+1/2,1] (B14)

For the middle layers (1<k<Kx and 1<k<Ky),(
− �TAvi, j,k−1/2

�zi+1/2, j,k−1/2

)
�mi+1/2, j,k−1+

(
�zi+1/2, j,k+ �TAvi, j,k−1/2

�zi+1/2, j,k−1/2
+ �TAvi, j,k+1/2

�zi+1/2, j,k+1/2

)
�mi+1/2, j,k

+
(

− �TAvi, j,k+1/2

�zi+1/2, j,k+1/2

)
�mi+1/2, j,k+1
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=�zi+1/2, j,k�
m+1
i+1/2, j,k−�zi+1/2, j,k�T [alxm+1

i+1/2, j,k

+ f j (�
m+1
i, j,k )

∗−Ah��m+1
i+1/2, j,k+KuD

′
i+1/2, j,k(u

m
i+1/2, j,k−ûmi+1/2, j,k)+zxm+1/2

i+1/2, j,k] (B15)

(
− �TAvi, j,k−1/2

�zi, j+1/2,k−1/2

)
�mi, j+1/2,k−1+

(
�zi, j+1/2,k+ �TAvi, j,k−1/2

�zi, j+1/2,k−1/2
+ �TAvi, j,k+1/2

�zi, j+1/2,k+1/2

)
�mi, j+1/2,k

+
(

− �TAvi, j,k+1/2

�zi, j+1/2,k+1/2

)
�mi, j+1/2,k+1

=�zi, j+1/2,k�
m+1
i+1/2, j,k−�zi, j+1/2,k�T [alym+1

i, j+1/2,k

− f j (�
m+1
i, j,k )

∗−Ah��m+1
i, j+1/2,k+KvD

′
i, j+1/2,k(v

m
i, j+1/2,k−v̂mi, j+1/2,k)+zym+1/2

i, j+1/2,k] (B16)

For the bottom layer (k=Kx and k=Ky),(
− �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2

)
�mi+1/2, j,Kx−1+

{
�zi+1/2, j,Kx + �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2
+�TCd [(um−1

i+1/2, j,Kx )
2

+((vm−1
i, j,Kx )

∗)2]1/2
}

�mi+1/2, j,Kx

=�zi+1/2, j,Kx�
m+1
i+1/2, j,Kx − �TCdumi+1/2, j,Kxu

m+1
i+1/2, j,Kx�

m+1
i+1/2, j,Kx

[(umi+1/2, j,Kx )
2+((vmi, j,Kx )

∗)2]1/2

−�zi+1/2, j,Kx�T [alxm+1
i+1/2, j,Kx + f j (�

m+1
i, j,Kx )

∗

− Ah��m+1
i+1/2, j,Kx +KuD

′
i+1/2, j,Kx (u

m
i+1/2, j,Kx − ûmi+1/2, j,Kx )+zxm+1/2

i+1/2, j,Kx ] (B17)

(
− �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2

)
�mi, j+1/2,Ky−1+

{
�zi, j+1/2,Ky+ �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2
+�TCd [(vm−1

i, j+1/2,Ky)
2

+((um−1
i, j,Ky)

∗)2]1/2
}

�mi, j+1/2,Ky

=�zi, j+1/2,Ky�
m+1
i, j+1/2,Ky−

�TCdv
m
i, j+1/2,Kyv

m+1
i, j+1/2,Ky�

m+1
i, j+1/2,Ky

[(vmi, j+1/2,Ky)
2+((umi, j,Ky)

∗)2]1/2

−�zi, j+1/2,Ky�T [alym+1
i, j+1/2,Ky− f j (�

m+1
i, j,Ky)

∗

− Ah��m+1
i, j+1/2,Ky+KvD

′
i, j+1/2,Ky(v

m
i, j+1/2,Ky− v̂mi, j+1/2,Ky)+zym+1/2

i, j+1/2,Ky] (B18)
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zx and zy of Equations (B13)–(B18) are the terms related to AE and can be written in a different
form as

zxm+1
i+1/2, j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�zi+1/2, j,k

Hxi+1/2, j
(zu1+zu2+zu3)

+ �zi, j+1/2,k

Hyi, j+1/2
(zu4+zu5), (k=1,2,3, . . . ,Kx−1)

�zi+1/2, j,k

Hxi+1/2, j
(zu1+zu2+zu3)

+ �zi, j+1/2,k

Hyi, j+1/2
(zu4+zu5)+zu6, (k=Kx)

zym+1/2
i, j+1/2,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�zi, j+1/2,k

Hyi, j+1/2
(zv1+zv2)+ �zi+1/2, j,k

Hxi+1/2, j
(zv3+zv4), k=1,2,3, . . . ,Ky−1

�zi, j+1/2,k

Hyi, j+1/2
(zv1+zv2)+ �zi+1/2, j,k

Hxi+1/2, j
(zv3+zv4)+zv5, k=Ky

where

zu1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	m+1/2
i+1/2, j (u

m
i+1/2, j,k−umi+1/2−1, j,k)

a j��

− umi+1/2+1, j,k	
m+1/2
i+1/2+1, j −umi+1/2, j,k	

m+1/2
i+1/2, j

a j��
, umi+1/2, j,k�0

	m+1/2
i+1/2, j (u

m
i+1/2+1, j,k−umi+1/2, j,k)

a j��

− umi+1/2, j,k	
m+1/2
i+1/2, j −umi+1/2−1, j,k	

m+1/2
i+1/2−1, j

a j��
, umi+1/2, j,k<0

zu2=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (vmi, j+1,k)
∗	m+1/2

i+1/2, j+1−(vmi, j,k)
∗	m+1/2

i+1/2, j )

R��
, (vmi, j,k)

∗�0

− (vmi, j,k)
∗	m+1/2

i+1/2, j −(vmi, j−1,k)
∗	m+1/2

i+1/2, j−1)

R��
, (vmi, j,k)

∗<0

zu3= 2(
m+1/2
i, j )∗umi+1/2, j,k tan� j+1/2

R
, zu4=−	m+1/2

i+1/2, j (v
m
i, j,k)

∗ tan� j

R

zu5=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
m+1/2
i, j )∗[(vmi, j,k)∗−(vmi−1, j,k)

∗]
a j��

, (umi, j,k)
∗�0

(
m+1/2
i, j )∗[(vmi+1, j,k)

∗−(vmi, j,k)
∗]

a j��
, (umi, j,k)

∗<0
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zu6= 	m+1/2
i+1/2, jCd

Hxi+1/2, j

{
[(umi+1/2, j,Kx )

2+((vmi, j,Kx )
∗)2]1/2+ umi+1/2, j,Kxu

m
i+1/2, j,Kx

[(umi+1/2, j,Kx )
2+((vmi, j,Kx )

∗)2]1/2
}

zv1=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (umi+1, j,k)
∗
m+1/2

i+1, j+1/2−(umi, j,k)
∗
m+1/2

i, j+1/2

a j��
, (umi, j,k)

∗�0

− (umi, j,k)
∗
m+1/2

i, j+1/2−(umi−1, j,k)
∗
m+1/2

i−1, j+1/2

a j��
, (umi, j,k)

∗<0

zv2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


m+1/2
i, j+1/2(v

m
i, j+1/2,k−vmi, j+1/2−1,k)

R��

− vmi, j+1/2+1,k

m+1/2
i, j+1/2+1−vmi, j+1/2,k


m+1/2
i, j+1/2

R��
, vmi, j+1/2,k�0


m+1/2
i, j+1/2(v

m
i, j+1/2+1,k−vmi, j+1/2,k)

R��

− vmi, j+1/2,k

m+1/2
i, j+1/2−vmi, j+1/2−1,k


m+1/2
i, j+1/2−1

R��
, vmi, j+1/2,k<0

zv3=− (	m+1/2
i, j )∗(umi, j,k)∗ tan� j

R
, zv4=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(	m+1/2
i, j )∗[(umi, j,k)∗−(umi, j−1,k)

∗]
R��

, (vmi, j,k)
∗�0

(	m+1/2
i, j )∗[(umi, j+1,k)

∗−(umi, j,k)
∗]

R��
, (vmi, j,k)

∗<0

zv5= 
m+1/2
i, j+1/2Cd

Hyi, j+1/2

{
[(vmi, j+1/2,Ky)

2+((umi, j,Ky)
∗)2]1/2+ vmi, j+1/2,Kyv

m
i, j+1/2,Ky

[(vmi+1/2, j,Ky)
2+((umi, j,Ky)

∗)2]1/2
}

alxi+1/2, j,k and alyi, j+1/2,k are the adjoint of convective terms in FI and we discretize them as
follows:

alxm+1
i+1/2, j,k =atu1+atu2+atu3+atu4+ 2(�m+1

i, j,k )
∗umi+1/2, j,k tan� j+1/2−�m+1

i+1/2, j,k(v
m
i, j,k)

∗ tan� j

R

alym+1
i, j+1/2,k =atv1+atv2+atv3+atv4− (�m+1

i, j,k )
∗(umi, j,k)∗ tan� j

R
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where

atu1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m+1
i+1/2, j,k(u

m
i+1/2, j,k−umi+1/2−1, j,k)

a j��

− umi+1/2+1, j,k�
m+1
i+1/2+1, j,k−umi+1/2, j,k�

m+1
i+1/2, j,k

a j��
, umi+1/2, j,k�0

�m+1
i+1/2, j,k(u

m
i+1/2+1, j,k−umi+1/2, j,k)

a j��

− umi+1/2, j,k�
m+1
i+1/2, j,k−umi+1/2−1, j,k�

m+1
i+1/2−1, j,k

a j��
, umi+1/2, j,k<0

atu2=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (vmi, j+1,k)
∗�m+1

i+1/2, j+1,k−(vmi, j,k)
∗�m+1

i+1/2, j,k

R��
, (vmi, j,k)

∗�0

− (vmi, j,k)
∗�m+1

i+1/2, j,k−(vmi, j−1,k)
∗�m+1

i+1/2, j−1,k

R��
, (vmi, j,k)

∗<0

atu4=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(�m+1
i, j,k )

∗[(vmi, j,k)∗−(vmi−1, j,k)
∗]

a j��
, (umi, j,k)

∗�0

(�m+1
i, j,k )

∗[(vmi+1, j,k)
∗−(vmi, j,k)

∗]
a j��

, (umi, j,k)
∗<0

atu3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(wm
i, j,1−1/2+wm

i+1, j,1−1/2+wm
i, j,1+1/2+wm

i+1, j,1+1/2)(�
m+1
i+1/2, j,2−�m+1

i+1/2, j,1)

4�zi+1/2, j,3/2
, k=1

1

4

[
(wm

i, j,k−1/2+wm
i+1, j,k−1/2)(�

m+1
i+1/2, j,k−�m+1

i+1/2, j,k−1)

�zi+1/2, j,k−1/2

+ (wm
i, j,k+1/2+wm

i+1, j,k+1/2)(�
m+1
i+1/2, j,k+1−�m+1

i+1/2, j,k)

�zi+1/2, j,k+1/2

]
, k=2,3, . . . ,Kx

atv1=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (umi+1, j,k)
∗�m+1

i+1, j+1/2,k−(umi, j,k)
∗�m+1

i, j+1/2,k

a j��
, (umi, j,k)

∗�0

− (umi, j,k)
∗�m+1

i, j+1/2,k−(umi−1, j,k)
∗�m+1

i−1, j+1/2,k

a j��
, (umi, j,k)

∗<0

atv4=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(�m+1
i, j,k )

∗[(umi, j,k)∗−(umi, j−1,k)
∗]

R��
, (vmi, j,k)

∗�0

(�m+1
i, j,k )

∗[(umi, j+1,k)
∗−(umi, j,k)

∗]
R��

, (vmi, j,k)
∗<0
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atv2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m+1
i, j+1/2,k(v

m
i, j+1/2,k−vmi, j+1/2−1,k)

R��

− vmi, j+1/2+1,k�
m+1
i, j+1/2+1,k−vmi, j+1/2,k�

m+1
i, j+1/2,k

R��
, vmi, j+1/2,k�0

�m+1
i, j+1/2,k(v

m
i, j+1/2+1,k−vmi, j+1/2,k)

R��

− vmi, j+1/2,k�
m+1
i, j+1/2,k−vmi, j+1/2−1,k�

m+1
i, j+1/2−1,k

R��
, vmi, j+1/2,k<0

atv3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(wm
i, j,1−1/2+wm

i, j+1,1−1/2+wm
i, j,1+1/2+wm

i, j+1,1+1/2)(�
m+1
i, j+1/2,2−�m+1

i, j+1/2,1)

4�zi, j+1/2,3/2
, k=1

1

4

[
(wm

i, j,k−1/2+wm
i, j+1,k−1/2)(�

m+1
i, j+1/2,k−�m+1

i, j+1/2,k−1)

�zi, j+1/2,k−1/2

+ (wm
i, j,k+1/2+wm

i, j+1,k+1/2)(�
m+1
i, j+1/2,k+1−�m+1

i, j+1/2,k)

�zi, j+1/2,k+1/2

]
, k=2,3, . . . ,Ky

Schemes (B13)–(B18) can be written in the more compact matrix form, and at u-points the
finite difference schemes are given by

E1�
m
i+1/2, j,1+T1�

m
i+1/2, j,2 = F1 (k=1)

Ak�
m
i+1/2, j,k−1+Ek�

m
i+1/2, j,k+Tk�

m
i+1/2, j,k+1 = Fk (k=2,3, . . . ,Kx−1)

AKx�
m
i+1/2, j,Kx−1+EKx�

m
i+1/2, j,Kx = FKx (k=Kx)

(B19)

At v-points they are given by

E ′
1�

m
i, j+1/2,1+T ′

1�
m
i, j+1/2,2 = F ′

1 (k=1)

A′
k�

m
i, j+1/2,k−1+E ′

k�
m
i, j+1/2,k+T ′

k�
m
i, j+1/2,k+1 = F ′

k (k=2,3, . . . ,Ky−1)

A′
Ky�

m
i, j+1/2,Ky−1+E ′

Ky�
m
i, j+1/2,Ky = F ′

Kx (k=Ky)

(B20)

where

E1=(�zi+1/2, j,1+�m+1/2
i, j )+ �TAvi, j,3/2

�zi+1/2, j,3/2
, T1=− �TAvi, j,3/2

�zi+1/2, j,3/2
, Ak =− �TAvi, j,k−1/2

�zi+1/2, j,k−1/2

Ek =�zi+1/2, j,k+ �TAvi, j,k−1/2

�zi+1/2, j,k−1/2
+ �TAvi, j,k+1/2

�zi+1/2, j,k+1/2

Tk =− �TAvi, j,k+1/2

�zi+1/2, j,k+1/2
, AKx =− �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2
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EKx =�zi+1/2, j,Kx + �TAvi, j,Kx−1/2

�zi+1/2, j,Kx−1/2
+�TCd [(um−1

i+1/2, j,Kx )
2+((vm−1

i, j,Kx )
∗)2]1/2

E ′
1=(�zi, j+1/2,1+�m+1/2

i, j )+ �TAvi, j,3/2
�zi, j+1/2,3/2

, T ′
1=− �TAvi, j,3/2

�zi, j+1/2,3/2
, A′

k =− �TAvi, j,k−1/2

�zi, j+1/2,k−1/2

E ′
k =�zi, j+1/2,k+ �TAvi, j,k−1/2

�zi, j+1/2,k−1/2
+ �TAvi, j,k+1/2

�zi, j+1/2,k+1/2

T ′
k =− �TAvi, j,k+1/2

�zi, j+1/2,k+1/2
, A′

Ky =− �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2

E ′
Ky =�zi, j+1/2,Ky+ �TAvi, j,Ky−1/2

�zi, j+1/2,Ky−1/2
+�TCd [(vm−1

i, j+1/2,Ky)
2+((um−1

i, j,Ky)
∗)2]1/2

F1,Fk,Fkx ,F ′
1,F

′
k,F

′
ky are equal to the right sides of (B13)–(B18), respectively. Equations (B19)

and (B20) are both tridiagonal systems that can be solved efficiently. After that, �m and �m can
be obtained.

Yi, j ,aLxi+1/2, j ,aLyi, j+1/2,,aRxi+1/2, j ,aRyi, j+1/2 of AE in Appendix B.1 are calculated in
AI, and their expressions are given by

Yi, j =
Kx∑
k=1

[
g�t

a j��
(�i+1/2, j,k−�i−1/2, j,k)(�zi+1/2, j,k+�k�i+1/2, j )

]/
Hxi+1/2, j

+
Ky∑
k=1

[
g�t

R��
(�i, j+1/2,k−�i, j−1/2,k)(�zi, j+1/2,k+�k�i, j+1/2)

]/
Hyi, j+1/2

aLxi+1/2, j =
∑Kx

k=1 [alxi+1/2, j,k(�zi+1/2, j,k+�k�i+1/2, j )]
Hxi+1/2, j

aLyi, j+1/2=
∑Ky

k=1 [alyi, j+1/2,k(�zi, j+1/2,k+�k�i, j+1/2)]
Hyi, j+1/2

aRxi+1/2, j = Cd	i+1/2, j {[u2i+1/2, j,Kx +(v∗
i, j,Kx )

2]1/2+[u2i+1/2, j,Kx +(v∗
i, j,Kx )

2]−1/2u2i+1/2, j,Kx }
Hxi+1/2, j

+ Cd

∗
i, j [u2i+1/2, j,Ky+(v∗

i, j,Ky)
2]−1/2v∗

i, j,Kyui+1/2, j,Ky

Hyi, j+1/2

aRyi, j+1/2 = Cd
i, j+1/2{[v2i, j+1/2,Ky+(u∗
i, j,Ky)

2]1/2+[v2i, j+1/2,Ky+(u∗
i, j,Ky)

2]−1/2v2i, j+1/2,Ky}
Hyi, j+1/2

+ Cd	∗
i, j [v2i, j+1/2,Kx +(u∗

i, j,Kx )
2]−1/2u∗

i, j,Kxvi, j+1/2,Kx

Hxi+1/2, j
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